Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations

Abstract

Metabolomics: phenotype-driven modules in a multifluid metabolic map Metabolism consists of complex interactions across various organs and body fluids, which poses a substantial challenge for the analysis of metabolic data. To address this problem, Jan Krumsiek from Helmholtz Zentrum München and colleagues used metabolomics measurements of plasma, urine, and saliva from 1000 people to statistically reconstruct a map of interactions in human metabolism. Based on this map, a novel approach that identifies highly correlated biochemical modules that are associated with a given phenotype, was tested for gender and insulin-like growth factor I (IGF-I). The identified modules provided insights into the interaction between metabolome and phenotype that reach beyond what can be found by commonly used statistical approaches for metabolomics. The approach is generic and can be readily applied to new datasets by other colleagues from the field

    Similar works

    Full text

    thumbnail-image

    Available Versions