Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia withLewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that asubstantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. Toovercome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability)in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. Thisshows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%).We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from eitherParkinson’s disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amountof variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed geneticcorrelation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positivecorrelation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic riskfactors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants