Three-dimensional objects in many application domains, such as architecture and construction, can be extremely complex and can consist of a large number of components. However, many of these complex objects also contain a great deal of repetition. Therefore, cloning techniques, which generate multiple spatially distributed copies of an object to form a repeated pattern, can be used to model these objects more efficiently. Such techniques are important and useful in desktop three-dimensional modeling systems, but we are not aware of any cloning techniques designed for immersive virtual environments (VEs). In this paper, we present an initial effort toward the design and development of such interfaces. We define the design space of the cloning task, and present five novel VE interfaces for cloning, then articulate the design rationale. We have also performed a usability study intended to elicit subjective responses with regard to affordance, feedback, attention, perceived usefulness, ease of use, and ease of learning in these interfaces. The study resulted in four major conclusions. First, slider widgets are better suited for discrete than for continuous numeric input. Second, the attentional requirements of the interface increase with increased degrees-of-freedom associated with widgets. Third, users prefer constrained widget movement, although more degrees-of-freedom allow more efficient parameter setting. Finally, appropriate feedback can reduce the cognitive load. The lessons we learned will influence our continuing design of cloning techniques, and these techniques will ultimately be applied to VE applications for design, construction, and prototyping