The problem of finding a reduced order model, optimal in the H2 sense, to a given system model is a fundamental one in control system analysis and design. The addition of an H∞ constraint to the H2 optimal model reduction problem results in a more practical yet computationally more difficult problem. Without the global convergence of probability-one homotopy methods the combined H2 /H∞ model reduction problem is difficult to solve. Several approaches based on homotopy methods have been proposed. The issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization problem, and the numerical robustness of the resulting homotopy algorithm. Homotopy algorithms based on two formulations---input normal form; Ly, Bryson, and Cannon's 2x2 block parametrization are developed and compared