thesis

In silico analysis of membrane transport/permeability mechanisms

Abstract

Lipid membranes are a fundamental component of living cells, mediating the physical separation of intracellular components from the external environment, as well as the different cellular organelles from cytoplasm. Transmembrane transport proteins confer permeability to lipid membranes, which is essential for nutrient translocation and energy metabolism. Crystallography of transmembrane proteins is a particularly challenging problem. Due to their natural localization and chemical properties only a limited number of structures are to date available at atomic resolution. In silico analysis can be successfully applied to address the structure and to propose testable models of transporters and pores and of their function. My PhD work focused on two main models: Pendrin (SLC26A4) and the Permeability Transition Pore (PTP). These two systems allowed me to investigate different membrane types and permeation mechanisms, i.e. the plasma membrane-specific anion exchange (SLC26A4) and the inner mitochondrial membrane (IMM) unselective PTP. Pendrin mutations are estimated to be the second most common genetic cause of human deafness, but a precise 3D structure of the protein is still missing. Aim of my work was to obviate the absence of structural information for pendrin transmembrane domain and to give a functional explanation for mutations collected in the MORL Deafness Variation Database. The human pendrin 3D model was inferred by homology with SLC26Dg and then validated analyzing the surface distribution of hydrophobic residues. The resulting high quality model was used to map 147 pathogenic human mutations. Three mutation clusters were found, while their localization suggested an innovative 14 transmembrane domain structure for pendrin. The nature of PTP has long remained a mystery. In 2013 Giorgio et. al. suggested dimers of F1FO (F)-ATP synthase to form the pore, however the exact PTP composition and how can a pore form from the energy-conserving enzyme is still matter of debate. PTP opening is triggered by an increased Ca2+ concentration in the mitochondrial matrix, and is favored by oxidative stress. To shed light on PTP function, I investigated the effect of Ca2+ binding to the Me2+ binding site of the F1 domain of F-ATP synthase through molecular dynamics (MD) simulations. A similar approach was also applied to the F-ATP synthase β subunit mutation T163S, which alters the relative affinity for Mg2+ and Ca2+. Experimental data show that Ca2+ binding stiffens the complex structure and that the T163S mutation induces resistance to PTP opening. Further, catalytic site rearrangement induced from different ion occupancy, as well as the mutation T163S, yields relevant variation of the interaction between F1 domain and OSCP subunit. I suggest that an unstructured loop between residues 82-131 of the β subunit transmits the structural rearrangement originated into catalytic site to the OSCP subunit and then to the inner membrane through the rigid lateral stalk. The critical role emerging for OSCP in the PTP regulation opens two parallel questions, i.e. (i) how the OSCP-mediated opening signal is transmitted to the trans-membrane region and (ii) what are the transmembrane PTP components. Variation in pore conductivity among species suggested that the putative pore-forming subunits may be different in different species. Sequence alignment was performed for all the subunits of F-ATP synthase, but we mainly focused on subunits e, g and b due to their localization in the complex and sequence conservation. Specific mutations affecting F-ATP synthase were collected and their functional effect is currently under analysis. In parallel, the presence and features of e, g and f subunits across eukaryotes was investigated by mean of phylogenetic analysis. Protein homologues of these specific subunits were found to be widespread in eukaryotes from yeast to plants while we found that Oomycetes lack subunits e and g and green algae subunit e. This observation suggest an ancient evolution for the F-ATP synthase dimerization subunits and possibly for the PTP. Further analysis and experimental validation are planned to clarify this aspect

    Similar works