There is evidence for coronal plasma flows to break down into fragments and
to be laminar. We investigate this effect by modeling flows confined along
magnetic channels. We consider a full MHD model of a solar atmosphere box with
a dipole magnetic field. We compare the propagation of a cylindrical flow
perfectly aligned to the field to that of another one with a slight
misalignment. We assume a flow speed of 200 km/s, and an ambient magnetic field
of 30 G. We find that while the aligned flow maintains its cylindrical symmetry
while it travels along the magnetic tube, the misaligned one is rapidly
squashed on one side, becoming laminar and eventually fragmented because of the
interaction and backreaction of the magnetic field. This model could explain an
observation of erupted fragments that fall back as thin and elongated strands
and end up onto the solar surface in a hedge-like configuration, made by the
Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The
initial alignment of plasma flow plays an important role in determining the
possible laminar structure and fragmentation of flows while they travel along
magnetic channels.Comment: 11 pages, 8 figures, accepted for publication, movies available upon
request to the first autho