The sources responsible for the emission of high-energy (≳ 100 TeV)
neutrinos detected by IceCube are still unknown. Among the possible candidates,
active galactic nuclei with relativistic jets are often examined, since the
outflowing plasma seems to offer the ideal environment to accelerate the
required parent high-energy cosmic rays. The non-detection of single point
sources or -- almost equivalently -- the absence, in the IceCube events, of
multiplets originating from the same sky position, constrains the cosmic
density and the neutrino output of these sources, pointing to a numerous
population of faint sources. Here we explore the possibility that FR0
radiogalaxies, the population of compact sources recently identified in large
radio and optical surveys and representing the bulk of radio-loud AGN
population, can represent suitable candidates for neutrino emission. Modeling
the spectral energy distribution of a FR0 radiogalaxy recently associated to a
γ-ray source detected by the Large Area Telescope onboard Fermi, we
derive the physical parameters of its jet, in particular the power carried by
it. We consider the possible mechanisms of neutrino production, concluding that
pγ reactions in the jet between protons and ambient radiation is too
inefficient to sustain the required output. We propose an alternative scenario,
in which protons, accelerated in the jet, escape from it and diffuse in the
host galaxy, producing neutrinos as a result of pp scattering with the
interstellar gas, in strict analogy with the processes taking place in
star-forming galaxies.Comment: 5 pages, 3 figures, accepted for publication in MNRA