The main aim of this paper is to bridge two directions of research
generalizing asymptotic density zero sets. This enables to transfer results
concerning one direction to the other one.
Consider a function g:ω→[0,∞) such that
limn→∞g(n)=∞ and g(n)n does not converge to 0.
Then the family $\mathcal{Z}_g=\{A\subseteq\omega:\
\lim_{n\to\infty}\frac{\text{card}(A\cap n)}{g(n)}=0\}isanidealcalledsimpledensityideal(oridealassociatedtoupperdensityofweightg).WecomparethisclassofidealswithErdo˝s−Ulamideals.Inparticular,weshowthatthereare\sqsubseteq−antichainsofsize\mathfrak{c}amongErdo˝s−Ulamidealswhichareandarenotsimpledensityideals.WecharacterizesimpledensityidealswhichareErdo˝s−Ulamasthosecontainingtheclassicalidealofsetsofasymptoticdensityzero.WealsocharacterizeErdo˝s−Ulamidealswhicharesimpledensityideals.Inthelattercaseweneedtointroducetwonewnotions.Oneofthem,calledincreasing−invarianceofanideal\mathcal{I},assertsthatgivenB\in\mathcal{I}andC\subseteq\omegawith\text{card}(C\cap
n)\leq\text{card}(B\cap n)foralln,wehaveC\in\mathcal{I}$.
Finally, we pose some open problems