Breast density classification is an essential part of breast cancer
screening. Although a lot of prior work considered this problem as a task for
learning algorithms, to our knowledge, all of them used small and not
clinically realistic data both for training and evaluation of their models. In
this work, we explore the limits of this task with a data set coming from over
200,000 breast cancer screening exams. We use this data to train and evaluate a
strong convolutional neural network classifier. In a reader study, we find that
our model can perform this task comparably to a human expert