These lecture notes provide a comprehensive, self-contained introduction to
the analysis of Wishart matrix moments. This study may act as an introduction
to some particular aspects of random matrix theory, or as a self-contained
exposition of Wishart matrix moments. Random matrix theory plays a central role
in statistical physics, computational mathematics and engineering sciences,
including data assimilation, signal processing, combinatorial optimization,
compressed sensing, econometrics and mathematical finance, among numerous
others. The mathematical foundations of the theory of random matrices lies at
the intersection of combinatorics, non-commutative algebra, geometry,
multivariate functional and spectral analysis, and of course statistics and
probability theory. As a result, most of the classical topics in random matrix
theory are technical, and mathematically difficult to penetrate for non-experts
and regular users and practitioners. The technical aim of these notes is to
review and extend some important results in random matrix theory in the
specific context of real random Wishart matrices. This special class of
Gaussian-type sample covariance matrix plays an important role in multivariate
analysis and in statistical theory. We derive non-asymptotic formulae for the
full matrix moments of real valued Wishart random matrices. As a corollary, we
derive and extend a number of spectral and trace-type results for the case of
non-isotropic Wishart random matrices. We also derive the full matrix moment
analogues of some classic spectral and trace-type moment results. For example,
we derive semi-circle and Marchencko-Pastur-type laws in the non-isotropic and
full matrix cases. Laplace matrix transforms and matrix moment estimates are
also studied, along with new spectral and trace concentration-type
inequalities