Side channel attacks are a major class of attacks to crypto-systems.
Attackers collect and analyze timing behavior, I/O data, or power consumption
in these systems to undermine their effectiveness in protecting sensitive
information. In this work, we propose a new cache architecture, called Janus,
to enable crypto-systems to introduce randomization and uncertainty in their
runtime timing behavior and power utilization profile. In the proposed cache
architecture, each data block is equipped with an on-off flag to enable/disable
the data block. The Janus architecture has two special instructions in its
instruction set to support the on-off flag. Beside the analytical evaluation of
the proposed cache architecture, we deploy it in an ARM-7 processor core to
study its feasibility and practicality. Results show a significant variation in
the timing behavior across all the benchmarks. The new secure processor
architecture has minimal hardware overhead and significant improvement in
protecting against power analysis and timing behavior attacks.Comment: 4 pages, 4 figure