research

Numerical evidences of universal trap-like aging dynamics

Abstract

Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has considerably grown recently thanks to the discovery that the trap like aging mechanism is directly controlling the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Establishing on a firmer ground the connection between these spin model out-of-equilibrium behavior and the trap like aging mechanism would shed new light on the properties, still largely mysterious, of the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidences of emergent trap-like aging behavior in a variety of disordered models. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to analyze the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of finite system's size effects.Comment: 25 pages, 15 figure

    Similar works