Prediction of Tool Recipe Runtimes in Semiconductor Manufacturing

Abstract

To improve throughput, due date adherence, or tool usage in semiconductor manufacturing, it is crucial to model the duration of individual processes such as coating, diffusion, or etching. Equipped with such data, production planning can develop dispatch schemes and schedules for optimized material routing. However, just a few tools indicate how long a process will take. Many variables affect the runtime of tool recipes that are used to realize processes. These variables include wafer processing mode, historical context, batch size, and job handling. In this thesis, a model that allows inferring tool recipe runtimes with adequate accuracy shall be developed. Firstly, predictive models shall be built for selected tools with known runtime behavior to establish a baseline for the methodology. Tools will be selected to cover a broad spectrum of processing modalities. The main predictors will be revealed using variable importance analysis. Furthermore, the analysis shall reveal under which conditions recipe runtime modeling is most accurate. Secondly, a generic approach shall be created to model recipe runtime. By accounting for tool, process, and material context, methods would be investigated from feature selection and automatic model selection. Finally, a pipeline for data cleansing, feature engineering, model building, and metrics will be developed using historical data from a wide range of factory data sources. Finally, a scheme to operationalize the findings shall be outlined. In particular, this requires establishing model serving to enable consumption in applications such as dispatching or operator interfaces

    Similar works