research

Spectral Attenuation of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

Abstract

Theoretical studies on the dissipation and dispersion of sound in two-phase suspensions have been briefly reviewed. Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic relationship with Omega Tau(sub d) (where Omega is the circular frequency and Tau(sub d) the Stokesian particle relaxation time). This dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value Omega Tau (sub d). Comparison of the predictions with the test data for the spectral attenuation of sound with water injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for nonlinear particle relaxation processes

    Similar works