research

Unresolved Problems by Shock Capturing: Taming the Overheating Problem

Abstract

The overheating problem, first observed by von Neumann [1] and later studied extensively by Noh [2] using both Eulerian and Lagrangian formulations, remains to be one of the unsolved problems by shock capturing. It is historically well known to occur when a flow is under compression, such as when a shock wave hits and reflects from a wall or when two streams collides with each other. The overheating phenomenon is also found numerically in a smooth flow undergoing rarefaction created by two streams receding from each other. This is in contrary to one s intuition expecting a decrease in internal energy. The excessive amount in the temperature increase does not reduce by refining the mesh size or increasing the order of accuracy. This study finds that the overheating in the receding flow correlates with the entropy generation. By requiring entropy preservation, the overheating is eliminated and the solution is grid convergent. The shock-capturing scheme, as being practiced today, gives rise to the entropy generation, which in turn causes the overheating. This assertion stands up to the convergence test

    Similar works