research

Integrating NASA Satellite Data Into USDA World Agricultural Outlook Board Decision Making Environment To Improve Agricultural Estimates

Abstract

The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. The goal of the current project is to improve WAOB estimates by integrating NASA satellite precipitation and soil moisture observations into WAOB's decision making environment. Precipitation (Level 3 gridded) is from the TRMM Multi-satellite Precipitation Analysis (TMPA). Soil moisture (Level 2 swath and Level 3 gridded) is generated by the Land Parameter Retrieval Model (LPRM) and operationally produced by the NASA Goddard Earth Sciences Data and Information Services Center (GBS DISC). A root zone soil moisture (RZSM) product is also generated, via assimilation of the Level 3 LPRM data by a land surface model (part of a related project). Data services to be available for these products include GeoTIFF, GDS (GrADS Data Server), WMS (Web Map Service), WCS (Web Coverage Service), and NASA Giovanni. Project benchmarking is based on retrospective analyses of WAOB analog year comparisons. The latter are between a given year and historical years with similar weather patterns and estimated crop yields. An analog index (AI) was developed to introduce a more rigorous, statistical approach for identifying analog years. Results thus far show that crop yield estimates derived from TMPA precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include LPRM surface soil moisture data and model-assimilated RZSM

    Similar works