The new space exploratory vision announced by President Bush on January 14, 2004, initiated new activities at the National Science and Space Administration (NASA) for human space missions to further explore our solar system. NASA is undertaking Lunar exploration to support sustained human and robotic exploration of Mars and beyond. A series of robotic missions to the Moon by 2008 to prepare for human exploration as early as 2015 but no later than 2020 are anticipated. In a similar way, missions to the Moon and Mars are being planned in Europe, Japan and Russia. These space missions will require international participation to solve problems in a number of important technological areas where research is needed, including biomedical risk mitigation as well as life support and habitability on the surface of Mars. Mitigation of dust hazards is one of the most important problems to be resolved for both Lunar and Mars missions. Both Lunar and Martian regolith are unique materials and completely different from the terrestrial soils that we are exposed to on earth. The total absence of water and an atmosphere on the moon and the formation of soil and fine dust by micrometeorite impacts over billions of years resulted in a layer of soil with unique properties. The soil is primarily basaltic in composition with a high glass concentration. The depth of the soil layer varies from a few meters in the mare areas (dark areas on the Lunar near side) to tens of meters in the highland areas (the lighter mountainous areas) and the particle size distribution of this dust layer varies widely with a major mass fraction less than 10 micrometer in diameter. The hard soil from the moon which has been extensively studied by several researchers showed clearly unique properties of Lunar soil. Apollo astronauts became aware of the potentially serious threat to crew health and mission hardware that can be caused by the lunar dust. As reported by McKay and Carrier the mass fraction of the lunar dust with particle diameter smaller than 20p.m probably represents up to 30% of the total mass of regolith. Apollo astronaut Dr. Harrison Schmidt reported that these fine dust particles were clinging to the Extra Vehicular Activity (EVA) suits and to the visors and were limiting the activity on the surface of the moon. The dust particles that were transported with the EVA suits into the lunar module floated throughout the cabin. Crews inhaled the dust particles and noted that they smelled like gun smoke, caused a chocking sensation in the throat and eye irritation. In addition,, some of the mechanical systems were not functioning well because of the dust deposition. It appeared that the dust particles are highly charged electrostatically and Dr. Schmidt noted that future successful Lunar missions will require appropriate dust mitigation technology for protecting astronauts from inhaling toxic particles and mission's life supporting equipment from contamination with the dust particles