research

Searching for Organics Preserved in 4.5 Billion Year Old Salt

Abstract

Our understanding of early solar system fluids took a dramatic turn a decade ago with the discovery of fluid inclusion-bearing halite (NaCl) crystals in the matrix of two freshly fallen brecciated H chondrite falls, Monahans and Zag. Both meteorites are regolith breccias, and contain xenolithic halite (and minor admixed sylvite -- KCl, crystals in their regolith lithologies. The halites are purple to dark blue, due to the presence of color centers (electrons in anion vacancies) which slowly accumulated as 40K (in sylvite) decayed over billions of years. The halites were dated by K-Ar, Rb-Sr and I-Xe systematics to be 4.5 billion years old. The "blue" halites were a fantastic discovery for the following reasons: (1) Halite+sylvite can be dated (K is in sylvite and will substitute for Na in halite, Rb substitutes in halite for Na, and I substitutes for Cl). (2) The blue color is lost if the halite dissolves on Earth and reprecipitates (because the newly-formed halite has no color centers), so the color serves as a "freshness" or pristinity indicator. (3) Halite frequently contains aqueous fluid inclusions. (4) Halite contains no structural oxygen, carbon or hydrogen, making them ideal materials to measure these isotopic systems in any fluid inclusions. (5) It is possible to directly measure fluid inclusion formation temperatures, and thus directly measure the temperature of the mineralizing aqueous fluid. In addition to these two ordinary chondrites halite grains have been reliably reported in several ureilites, an additional ordinary chondrite (Jilin), and in the carbonaceous chondrite (Murchison), although these reports were unfortunately not taken seriously. We have lately found additional fluid inclusions in carbonates in several additional carbonaceous chondrites. Meteoritic aqueous fluid inclusions are apparently relatively widespread in meteorites, though very small and thus difficult to analyze

    Similar works