This paper presents an approach for the prediction and characterization of the near-field acoustic levels from closely-spaced clustered rocket engines. The calculations are based on the method proposed by Eldred, wherein the flowfield from the clustered rockets is divided into two zones. Zone 1 contains the isolated nozzles which produce noise independently, and extends up to a distance where the individual flows completely mix to form an equivalent single nozzle flow. Zone 2 is occupied by the single mixed stream starting from the station where the jets merge. The acoustic fields from the two zones are computed separately on the basis of the NASA-SP method of Eldred developed for a single equivalent nozzle. A summation of the spectra for the two zones yields the total effective sound pressure level for the clustered engines. Under certain conditions of nozzle spacing and flow parameters, the combined sound pressure level spectrum for the clustered nozzles displays a double peak. Test cases are presented here to demonstrate the importance of hydrodynamic interactions responsible for the double peak in the sound spectrum in the case of clustered rocket nozzles, and the role of ground reflections in the case of non-interfering jets. A graphics interface (Rocket Acoustic Prediction Tool) has been developed to take into account the effects of clustered nozzles and ground reflections