research

Assessment of Uncertainty-Based Screening Volumes for NASA Robotic LEO and GEO Conjunction Risk Assessment

Abstract

Conjunction Assessment operations require screening assets against the space object catalog by placing a pre-determined spatial volume around each asset and predicting when another object will violate that volume. The selection of the screening volume used for each spacecraft is a trade-off between observing all conjunction events that may pose a potential risk to the primary spacecraft and the ability to analyze those predicted events. If the screening volumes are larger, then more conjunctions can be observed and therefore the probability of a missed detection of a high risk conjunction event is small; however, the amount of data which needs to be analyzed increases. This paper characterizes the sensitivity of screening volume size to capturing typical orbit uncertainties and the expected number of conjunction events observed. These sensitivities are quantified in the form of a trade space that allows for selection of appropriate screen-ing volumes to fit the desired concept of operations, system limitations, and tolerable analyst workloads. This analysis will specifically highlight the screening volume determination and selection process for use in the NASA Conjunction Assessment Risk Analysis process but will also provide a general framework for other Owner / Operators faced with similar decisions

    Similar works