research

A Review of Lunar Regolith Excavation Robotic Device Prototypes

Abstract

The excavation of lunar regolith is desirable for use as a feedstock for oxygen production processes as well as civil engineering purposes and for the fabrication of parts and structures. This is known as In-Situ Resource Utilization (ISRU). More recently, there has been mounting evidence that water ice exists at the poles of the Moon, buried in the regolith where thermally stable conditions exist. This means that regolith excavation will be required to mine the water ice which is believed to be. mixed in with the regolith, or bonded to it. The mined water ice can then be electrolyzed to produce hydrogen and oxygen propellants which could form the basis of a cis-lunar transportation system using in-situ derived propellants. In 2007, the National Aeronautics & Space Administration (NASA) sponsored a Lunar Regolith Excavation Competition as part of its Centennial Challenges program, The competition was not won and it was held again in 2008 and 2009, when it was won by a university team. A $500,000 prize was awarded to the winning team by NASA. In 2010, NASA continued the competition as a spinoff of the Centennial Challenges, which is restricted to university participation only. This competition is known as the "Lunabotics Mining Competition" and is hosted by NASA at Kennedy Space Center. Twenty three American university teams competed in the 2010 Lunabotics Mining Competition. The competition was held again in May 2011 with over 60 teams registered, including international participation. The competition will be held again in May 2012 at Kennedy Space Center in Florida. . This paper contains a thorough review of the various regolith eX,cavation robotic device prototypes that competed in these NASA competitions, and will. classify the machines and their methods of excavation to document the variety of ideas that were spawned and built to compete at these events. It is hoped that documentation of these robots will serve to help future robotic excavation designers and provide a historical reference for future lunar mining machine endeavors

    Similar works