slides

In the Beginning...

Abstract

Having just emerged from the warmest decade on record and watching as the oceans acidify and sea level rises, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we develop an alternative to fossil fuels in time to make a difference for our children and the "children" of all species? NASA puts people into outer space, where all resources (food, water, air, pressure, gravity, energy) are limited and far away and where conditions (temperature, radiation, vacuum) are problematic and dangerous-the life expectancy of an unprotected astronaut (physically exposed to the space environment) is 15 seconds. Therefore, by necessity, NASA has explored and developed "life-support systems" that optimize the use of resources, minimize the use of energy, and recycle, refurbish, re-use everything that on earth would be considered a waste material. Emerging from the legacy of life-support systems, the NASA OMEGA project uses microalgae, municipal wastewater, and the encroaching oceans to address our global needs for a sustainable, carbon-neutral, environmentally friendly energy supply that does not compete with agriculture. The OMEGA project is focused on producing aviation fuel, treating municipal wastewater, and sequestering carbon dioxide. More generally, however, OMEGA is an example of an "ecology of technologies" in which all processes are integrated and inter-dependent and wastes become resources. From a NASA perspective, the OMEGA project is also a reminder that "we are not passengers on Spaceship Earth, we are the crew.

    Similar works