research

Incorporation of alpha-Ketoglutaric Acid as a Fixed Bed Scrubber Media for the Neutralization of Hydrazine Family Hypergolic Fuels

Abstract

A candidate scrubber media, alpha-ketoglutaric acid (aKGA) adsorbed onto a silica-based substrate was examined as a potential alternative to the hydrazine-family hypergolic fuel neutralization techniques currently utilized at NASA/Kennedy Space Center (KSC). Helvenson et. al. has indicated that aKGA will react with hydrazines to produce non-hazardous, possibly biodegradable products. Furthermore, the authors have previously tested and demonstrated the use of aKGA aqueous solutions as a replacement neutralizing agent for citric acid, which is currently used as a scrubbing agent in liquid scrubbers at KSC. Specific properties examined include reaction efficiency, the loading capacity of aKGA onto various silica substrates, and the comparison of aKGA media performance to that of the citric acid vapor scrubber systems at KSC and a commercial vapor scrubber media. Preliminary investigations showed hydrophobic aerogel particles to be an ideal substrate for the deposition of the aKGA. Current studies have shown that the laboratory produced aKGA-Aerogel absorbent media are more efficient and cost effective than a commercially available fixed bed scrubber media, although much less cost effective than liquid-based citric acid scrubbers (although possibly safer and less labor intensive). A comparison of all three alternative scrubber technologies (liquid aKGA, solid-phase aKGA, and commercially available sorbent materials) is given considering both hypergolic neutralization capabilities and relative costs (as compared to the current citric acid scrubbing technology in use at NASA/KSC)

    Similar works