research

Analysis of Rocket, Ram-Jet, and Turbojet Engines for Supersonic Propulsion of Long-Range Missles. II - Rocket Missile Performance

Abstract

The theoretical performance of a two-stage ballistic rocket mis having a centerbody and two parallel boosters was investigated for J oxygen and ammonia-fluorine propellants. Both power-plant and missi parameters were optimized to give minimum cost on-the basis of the analysis for a range of 5500 nautical miles. After optimum values were found, each parameter was varied independently to determine its effect on performance of the missile. The missile using the ammonia-fluorine propellant weighs about one half as much as a missile using JP4-oxygen. Based on an expected unit cost of fluorine in quantity production, the ammonia-fluorine missile has a substantially lower relative cost than a JP4-oxygen missile. Optimum chamber pressures for both propellant systems and for both the centerbody and boosters were between 450 and 600 pounds per square inch. High design altitudes for the exhaust nozzle are desirable for both the centerbody and boosters. For the centerbody, the design altitude should be between 45,000 and 60,000 feet, with the value for ammonia-fluorine lower than that for JP4-oxygen. For the boosters, the design altitude should be 20,000 to 30,000 feet, with the value for the ammonia-fluorine. missile higher

    Similar works