research

Stability of Supersonic Boundary Layers on a Cone at an Angle of Attack

Abstract

The stability and receptivity of three-dimensional supersonic boundary layers over a 7deg sharp tipped straight cone at an angle of attack of 4.2deg is numerically investigated at a free stream Mach number of 3.5 and at two high Reynolds numbers, 0.25 and 0.50x10(exp 6)/inch. The generation and evolution of stationary crossflow vortices are also investigated by performing simulations with three-dimensional roughness elements located on the surface of the cone. The flow fields with and without the roughness elements are obtained by solving the full Navier-Stokes equations in cylindrical coordinates using the fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for spatial discretization and using the third-order total-variation-diminishing (TVD) Runge-Kutta scheme for temporal integration. Stability computations reveal that the azimuthal wavenumbers are in the range of m approx. 25-50 for the most amplified traveling disturbances and in the range of m approx. 40-70 for the stationary disturbances. The N-Factor computations predicted that transition would occur further forward in the middle of the cone compared to the transition fronts near the windward and the leeward planes. The simulations revealed that the crossflow vortices originating from the nose region propagate towards the leeward plane. No perturbations were observed in the lower part of the cone

    Similar works