research

Experimental Crystallization of Yamato 980459

Abstract

Currently, only two martian meteorites QUE 94201 (QUE) and Yamato 980459 (Y98) have been experimentally shown to me true melt compositions. Most martian meteorites are instead, cumulates or partial cumulates. We have performed experiments on a Y98 composition to assess whether QUE could be related to Y98 by some fractionation process [1]. Y98 is a basaltic shergottite from the SNC (Shergotty, Nakhla, Chassigny) meteorite group. Y98 is composed of 26% olivine, 48% pyroxene, 25% mesostasis, and no plagioclase [2]. The large size of the olivine megacrysts and absence of plagioclase suggest that the parental melt which formed this meteorite had begun cooling slowly until some mechanism, such as magma ascent, caused rapid cooling [3]. Y98 s olivines have the highest Mg content of all the shergottites suggesting that it is the most primitive [4]. Y98 has been determined to be a melt composition by comparing the composition of experimental liquidus olivines with the composition of the cores of Y98 olivines [4]. The liquidus of Y98 is predicted by MELTS [5] and by experimentation [6] to be ~1450 C. Analyses of Y98 show it to be very depleted in LREEs and it has similar depleted patterns as other shergottites such as QUE [7]

    Similar works