research

An Instrument to Enable Identification of Anthropogenic CO2 Emissions Using Concurrent CO Measurements

Abstract

We have developed an instrument concept that will enable the measurement of CO from the top of the atmosphere to the Earth's surface with very high sensitivity and at the high spatial and temporal resolutions required by the NRC Decadal Survey mission Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). We are developing an innovative CO sensor that will enable the ASCENDS mission to differentiate between anthropogenic and natural sources and sinks of global carbon. The NRC Decadal Survey places particular emphasis on retrieving CO information for the planetary boundary layer. Measurement made using both the 2.3 micron and 4.7 micron channels are needed to achieve the sensitivity required in the lower atmosphere where the degree of CO - CO2 correlation is indicative of anthropogenic sources of CO2. Measurements made using only the 4.7 micron channel cannot provide sufficient sensitivity to CO in the very lowest layers of the atmosphere. The fundamental method we use is Gas Filter Correlation Radiometry (GFCR), a highly successful technique used in other airborne and space-based missions for detecting trace species in the Earth's atmosphere. Our version of GFCR overcomes many of the limitations encountered by prior and existing instruments, allowing us to measure weak signals from small targets very quickly and with extremely high specificity by employing a new dual beam radiometer concept using a focal plane array. Our design will provide a means to make the desired CO measurements for the ASCENDS mission. A simple change in gas filter cell contents would allow the same hardware to measure CH4 with high precision under the nominal ASCENDS mission spatial and temporal constraints. All critical components in the sensor design are mature, many subsystems tested, and the system has been extensively modeled, bringing it to a present Technology Readiness Level (TRL) of 3 (though some individual components are at TRLs 6-9). We are presently developing critical components for the new spectrometer and advancing our understanding of the measurement requirements for both CO and CH4. This new GFCR technique/sensor will enable measurements of trace gases with high sensitivity while maintaining the inherent robustness and simplicity of the more traditional radiometer hardware. Initial estimates of cost/risk of a spacebased 2-channel GFCR indicate that our design is extremely cost effective and will fit within existing ASCENDS mission budget constraints as determined by the NRC Decadal Survey and a NASA-sponsored mission study

    Similar works