Evaluation of Coatings and Materials for Future Radiators

Abstract

Radiators are used to reject energy from space vehicles through radiant heat transfer. They are typically the largest component in a vehicle's thermal control system and can have a large impact on the vehicle design and operation. NASA s current vision for exploration dictates that radiators for a Crew Exploration Vehicle (CEV), a Lunar Surface Access Module (LSAM), and a lunar base will need to be developed. These applications present new challenges when compared to previous radiators on the Space Shuttle and International Space Station (ISS). In addition, many technological advances have been made that could positively impact future radiator design. This paper outlines new requirements for future radiators and documents a trade study performed to select the some promising technologies for further evaluation. The technologies include K1100 based carbon composites for the radiator surface as well as Optical Solar Reflectors (OSRs), a lithium based white paint, and electrochromic thin films for optical coatings. Coupons were made using these materials and tests were performed to characterize their performance. Testing included evaluating structural and thermal properties of the carbon composites, thermal cycling, launch pad weather simulation, and exposure to solar wind, and Ultraviolet (UV) radiation

    Similar works

    Full text

    thumbnail-image