One route to increased aircraft performance is through the use of flexible, shape-changeable aerodynamics effectors. However, state of the art materials are not flexible or durable enough over the required broad temperature range. Mixed siloxanes were crosslinked by polyhedral oligomeric silsesquioxanes (POSS) producing novel materials that remained flexible and elastic from -55 to 94 C. POSS molecules were chemically modified to generate homogeneous distributions within the siloxane matrix. High resolution scanning electron microscope (HRSEM) images indicated homogenous POSS distribution up to 0.8 wt %. Above the solubility limit, POSS aggregates could be seen both macroscopically and via SEM (approx.60-120 nm). Tensile tests were performed to determine Young s modulus, tensile strength, and elongation at break over the range of temperatures associated with transonic aircraft use (-55 to 94 C; -65 to 200 F). The siloxane materials developed here maintained flexibility at -55 C, where previous candidate materials failed. At room temperature, films could be elongated up to 250 % before rupturing. At -55 and 94 C, however, films could be elongated up to 400 % and 125 %, respectively