research

Soft Soil Impact Testing and Simulation of Aerospace Structures

Abstract

In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented

    Similar works