We are currently conducting preliminary studies on the diversity of iron-tolerant cyanobacteria (CB) isolated from iron-depositing hot springs in and around Yellowstone National Park (WY, USA). In conclusion, there is no consensus on the divergence of cyanobacteria from a common ancestor for either anoxygenic or oxygenic phototrophs. Anoxygenic photosynthesis may have provided energy for the common ancestor, but it is unclear what environmental pressure induced the evolving of oxygenic phototrophs. It is supposed, however, that predecessors of contemporary CB were capable of oxidizing various substrates other than water , and it is likely that Fe2+ could be one of those substrates . If that were the case, the work of entire photosystems in Precambrian cyanobacteria and/or in their predecessors could follow three scenarios (at least): 1) ferrous iron may have been oxidized in PS II but without significant effects on oxygen evolution, and environmental iron could have been oxidized either enzymatically or chemically; 2) ferrous iron may have been oxidized only enzymatically by PS II, accompanied by the repression of O2 evolution; or 3) ferrous iron may have been oxidized by PS I upon the prevalence of anoxygenic photosynthesis or without any effect on PS II. All of these scenarios will be the subject of our future studies with the aim to understand which line-ages of CB could be typical for Precambrian time