research

Fabrication end Deployment Testing of Meter Solar Sail Quadrants for a Scaleable Square Solar Sail Ground Test System

Abstract

In order for solar sail propulsion technologies to be considered as a viable option for a wide range of near term practical missions a predictable, stable, reliable, manufactureable, scaleable, and cost effective system must be developed and tested first on earth and then on orbit. The design and development of a Scaleable Square Solar Sail System (S^4) is well underway a t AEC-Able Engineering Co. Inc., and the design and production of the Solar Sails for this system is being carried out by SRS Technologies. In April and May of 2004 a single quadrant 10-meter system was tested at NASA LARC's vacuum chamber and a four quadrant 20-meter system has been designed and built for deployment and testing in the Spring of 2005 at NASA/Glenn Research Center's Plumb Brook Facility. SRS has developed an effective and efficient design for triangular sail quadrants that are supported are three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline the sail design and fabrication process, the lessons learned and the resulting mature production, packaging and deployment processes that have been developed. It will also highlight the scalability of the equipment and processes that were developed to fabricate and package the sails. Based on recent experience, SRS is confidant that flight worthy solar sails in the 40-120-meter size range with areal density in the 4-5g/sq m (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 20 g/sq m using the current design resulting in a system areal density of as low as 5.3g/sq m. These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the scientific community and the fundamental technology required to produce these sails has been demonstrated on the ground test sails that have recently been built. These demonstrations have shown that the technology is mature enough to build sails needed to support critical science missions. Solar Sails will be an enabling technology for NASA's Vision for Space Exploration by allowing communication satellite orbits that can maintain continuous communication with the polar regions of the Moon and Mars and to support solar weather monitoring to provide early warning of solar flares and storms that could threaten the safety of astronauts and other spacecraft

    Similar works