An Integrated Vehicle Modeling Environment

Abstract

This paper describes an Integrated Vehicle Modeling Environment for estimating aircraft geometric, inertial, and aerodynamic characteristics, and for interfacing with a high fidelity, workstation based flight simulation architecture. The goals in developing this environment are to aid in the design of next generation intelligent fight control technologies, conduct research in advanced vehicle interface concepts for autonomous and semi-autonomous applications, and provide a value-added capability to the conceptual design and aircraft synthesis process. Results are presented for three aircraft by comparing estimates generated by the Integrated Vehicle Modeling Environment with known characteristics of each vehicle under consideration. The three aircraft are a modified F-15 with moveable canards attached to the airframe, a mid-sized, twin-engine commercial transport concept, and a small, single-engine, uninhabited aerial vehicle. Estimated physical properties and dynamic characteristics are correlated with those known for each aircraft over a large portion of the flight envelope of interest. These results represent the completion of a critical step toward meeting the stated goals for developing this modeling environment

    Similar works

    Full text

    thumbnail-image