A Design Heritage-Based Forecasting Methodology for Risk Informed Management of Advanced Systems

Abstract

The development of next generation systems often carries with it the promise of improved performance, greater reliability, and reduced operational costs. These expectations arise from the use of novel designs, new materials, advanced integration and production technologies intended for functionality replacing the previous generation. However, the novelty of these nascent technologies is accompanied by lack of operational experience and, in many cases, no actual testing as well. Therefore some of the enthusiasm surrounding most new technologies may be due to inflated aspirations from lack of knowledge rather than actual future expectations. This paper proposes a design heritage approach for improved reliability forecasting of advanced system components. The basis of the design heritage approach is to relate advanced system components to similar designs currently in operation. The demonstrated performance of these components could then be used to forecast the expected performance and reliability of comparable advanced technology components. In this approach the greater the divergence of the advanced component designs from the current systems the higher the uncertainty that accompanies the associated failure estimates. Designers of advanced systems are faced with many difficult decisions. One of the most common and more difficult types of these decisions are those related to the choice between design alternatives. In the past decision-makers have found these decisions to be extremely difficult to make because they often involve the trade-off between a known performing fielded design and a promising paper design. When it comes to expected reliability performance the paper design always looks better because it is on paper and it addresses all the know failure modes of the fielded design. On the other hand there is a long, and sometimes very difficult road, between the promise of a paper design and its fulfillment; with the possibility that sometimes the reliability promise is not fulfilled at all. Decision makers in advanced technology areas have always known to discount the performance claims of a design to a degree in proportion to its stage of development, and at times have preferred the more mature design over the one of lesser maturity even with the latter promising substantially better performance once fielded. As with the broader measures of performance this has also been true for projected reliability performance. Paper estimates of potential advances in design reliability are to a degree uncertain in proportion to the maturity of the features being proposed to secure those advances. This is especially true when performance-enhancing features in other areas are also planned to be part of the development program

    Similar works