Complex I of mitochondrial respiratory chain a its disorders.

Abstract

NADH: ubiquinone oxidoreductase (Complex I) is a multisubunit protein complex of inner mitochondrial membrane. Complex I is the biggest and most complicated part of oxidative phosphorylation system, which is responsible for the cell ATP production. It consists of 45 subunits. 7 subunits are mitochondrial encoded, remainder 38 are nuclear encoded. NADH: ubiquinone oxidoreductase has L-shaped structure, which is built of two arms: membrane arm and matrix located peripheral arm. Complex I oxidize the NADH molecule. The electron transport is coupled with proton pumping across the inner mitochondrial membrane to intermembrane space, where proton gradient developed and which is used by ATP synthase to ATP synthesis. Deficiencies of NADH: ubiquinone oxidoreductase represent extensive, clinically and genetic heterogeneous group of mitochondrial diseases. Decrease of activity and amount of complex I, decrease of ATP production, changes of membrane potential, mitochondrial morphology and mitochondrial network and increasing of production of reactive oxygen species are found in cells with defects of NADH: ubiquinone oxidoreductase. Combination of this features lead to serious illnesses, which are almost fatal and we still haven't any useful therapy. Aim of this study is to summarize present knowledge about..

    Similar works