research

January-february Tropospheric Climate for the Northern Hemisphere and the 11-year Solar Cycle, the QBO and the Southern Oscillation

Abstract

Examined here is a recently discovered association between the 11-year solar cycle and the atmosphere that is most easily detectable when the two phases of the Quasi-biennial Oscillation (QBO) are considered individually rather than pooled. The influence of the Southern Oscillation (SO) for either of the two QBO phases is then combined with that of the solar cycle in the form of two-predictor multiple regression. The strong and well-defined relationship between the 11-year 10.7 cm solar flux cycle and the lower troposphere Northern Hemisphere January-February climate for QBO phase-stratified samples (van Loon and Labitzke 1988, Barnston and Livezey 1989) failed for the west QBO phase in 1989. Here, the opposing 1989 event is explained, at least in part, on the basis of the phase of the SO (the cold tropical Pacific SST event of 1988 to 1989). It is demonstrated that both the SO and the solar flux have moderate and quasi-independent correlations with the climate over certain regions, and where there is strong overlap they can work either in harmony or in opposition. In 1989 in North America the influences of the SO and the flux conflicted to an unprecedented extent, and the SO was the controlling influence in most regions of the continent (western Canada being one exception). The 1989 event draws attention to the smallness of the QBO phase-stratified samples and the still more serious holes in the two-dimensional sample space of flux and SO when both factors are viewed as predictors within one QBO phase

    Similar works