research

Time-domain sensitivity enhancement in pulsed Pb-TDL gas monitors

Abstract

A Pb-salt tunable diode laser (TDL) has found many applications in the field of atmospheric gas analysis. Its continuous tunablility and fine spectral purity in the mid infrared region are outstanding from other lasers. The only shortcoming is that it requires cryogenic operating temperatures, though, it is improved year by year towards the room temperature operation. A repeated pulse operation of Pb salt diode lasers is possible with a thermoelectric cooling device, which allows an instrument a portable geometry disusing a heavy, bulky and power consuming mechanical refrigerator. A derivative spectrometry was exploiting the quick tunability of Pb salt diode lasers, though they are continuous wave (cw) operated with refrigerator or liquid nitrogen so far. A new system for derivative spectrometry with a pulsed diode laser will extend its field of applications because of reduced weights and size of measuring instruments. A preliminary results is shown that demonstrates the feasibility of an attempt to implement the derivative spectrmetry with repeatedly pulse driven diode lasers. Atmospheric methane was measured with 8 ppm/m sensitivity. Further results of parametric optimization for the best signal to noise ratios under any given device characteristics as well as for available real devices is given

    Similar works