CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Refining Architectures of Deep Convolutional Neural Networks
Authors
R Cipolla
A Criminisi
+3 more
Y Ioannou
D Robertson
S Shankar
Publication date
22 April 2016
Publisher
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Doi
Cite
View
on
arXiv
Abstract
© 2016 IEEE. Deep Convolutional Neural Networks (CNNs) have recently evinced immense success for various image recognition tasks [11, 27]. However, a question of paramount importance is somewhat unanswered in deep learning research - is the selected CNN optimal for the dataset in terms of accuracy and model size? In this paper, we intend to answer this question and introduce a novel strategy that alters the architecture of a given CNN for a specified dataset, to potentially enhance the original accuracy while possibly reducing the model size. We use two operations for architecture refinement, viz. stretching and symmetrical splitting. Stretching increases the number of hidden units (nodes) in a given CNN layer, while a symmetrical split of say K between two layers separates the input and output channels into K equal groups, and connects only the corresponding input-output channel groups. Our procedure starts with a pre-trained CNN for a given dataset, and optimally decides the stretch and split factors across the network to refine the architecture. We empirically demonstrate the necessity of the two operations. We evaluate our approach on two natural scenes attributes datasets, SUN Attributes [16] and CAMIT-NSAD [20], with architectures of GoogleNet and VGG-11, that are quite contrasting in their construction. We justify our choice of datasets, and show that they are interestingly distinct from each other, and together pose a challenge to our architectural refinement algorithm. Our results substantiate the usefulness of the proposed method
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fcvpr.2016.2...
Last time updated on 01/04/2019
Sustaining member
Apollo (Cambridge)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repository.cam.ac.uk:1...
Last time updated on 24/03/2018
Sustaining member
Apollo (Cambridge)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repository.cam.ac.uk:1...
Last time updated on 19/10/2017