A simplified mathematical model was developed which predicts the optical propagation losses which occur when an optical beam of given wave length passes through a turbulent boundary layer or shear layer. The optical losses are predicted in terms of line spread function (or Strehl ratio) and modulation transfer function by using experimentally determined values of layer thickness, streamwise, lateral and beamwise density fluctuation length scales, and distribution of the standard deviation of the density fluctuations through the turbulent layer. The prediction model was applied to the analysis of a number of selected cases of interest from the aerodynamic-optical interaction wind-tunnel investigation conducted in the NASA-Ames 1.83 x 1.83 meter (6 x 6 ft) wind tunnel. Direct optical measurements are compared with the results predicted by the aerodynamic analysis