A FETI-DP TYPE DOMAIN DECOMPOSITION ALGORITHM FOR THREE-DIMENSIONAL INCOMPRESSIBLE STOKES EQUATIONS

Abstract

The FETI-DP (dual-primal finite element tearing and interconnecting) algorithms, proposed by the authors in [SIAM J. Numer. Anal., 51 (2013), pp. 1235–1253] and [Internat. J. Numer. Methods Engrg., 94 (2013), pp. 128–149] for solving incompressible Stokes equations, are extended to three-dimensional problems. A new analysis of the condition number bound for using the Dirichlet preconditioner is given. The algorithm and analysis are valid for mixed finite elements with both continuous and discontinuous pressures. An advantage of this new analysis is that the numerous coarse level velocity components, required in the previous analysis to enforce the divergence-free subdomain boundary velocity conditions, are no longer needed. This greatly reduces the size of the coarse level problem in the algorithm, especially for three-dimensional problems. The coarse level velocity space can be chosen as simple as those coarse spaces for solving scalar elliptic problems corresponding to each velocity component. Both the Dirichlet and lumped preconditioners are analyzed using the same framework in this new analysis. Their condition number bounds are proved to be independent of the number of subdomains for fixed subdomain problem size. Numerical experiments in both two and three dimensions, using mixed finite elements with both continuous and discontinuous pressures, demonstrate the convergence rate of the algorithms

    Similar works