research

Laser Imaging Detection and Ranging Performance in a High-Fidelity Lunar Terrain Field

Abstract

The prime objective of this project is to evaluate Laser Imaging Detection and Ranging (LIDAR) systems and compare their performance for hazard avoidance when tested at the NASA Marshall Space Flight Center's (MSFC's) lunar high-fidelity terrain field (see fig. 1). Hazard avoidance is the ability to avoid boulders, holes, or slopes that would jeopardize a safe landing and the deployment of scientific payloads. This capability is critical for any sample return mission intending to land in challenging terrain. Since challenging terrain is frequently where the most scientifically attractive targets are, hazard avoidance will be among the highest priorities for future robotic exploration missions. The maturation of hazard avoidance sensing addressed in this project directly supports the MSFC Tier I priority of sample return

    Similar works