research

Experimental Study into the Stability of Whitlockite in Basaltic Magmas

Abstract

Apatite Ca5(PO4)3(F,Cl,OH), merrillite Ca18Na2Mg2(PO4)14, and whitlockite Ca9(Mg,Fe2+)(PO4)6[PO3(OH)] are the primary phosphate minerals found in most planetary materials including rocks from Earth, Moon, Mars, and asteroids [1-2]. For many years, the terms merrillite and whitlockite have been used interchangeably in the meteorite literature. Much of the confusion regarding the relationship between terrestrial and extraterrestrial "whitlockite" is based on the presence or absence of hydrogen in the mineral structure. Whitlockite has approximately 8500 ppm H2O, and the term "merrillite" has been adopted to identify the hydrogen-free form of whitlockite [2]. The atomic structures of merrillite and whitlockite were examined in detail by Hughes et al. [3-4]. On Earth, whitlockite has been found in rocks from evolved pegmatitic systems [2-4] and in some mantle rocks [e.g., 5]. Furthermore, terrestrial whitlockite has been shown to have some merrillite component [4]. For the meteoritic and lunar materials that have been investigated, merrillite appears to be far more common than whitlockite, and it has been proposed that the whitlockite component is unique to terrestrial samples [4]. There are some reports of "whitlockite" in the meteorite literature; however, these likely represent misidentifications of merrillite because there have been no reports of extraterrestrial whitlockite that have been verified through crystal structural studies or analyzed for their H contents. Hughes et al. [3] reported the atomic arrangement of lunar merrillite and demonstrated that the phase is similar to meteoritic merrillite and, predictably, devoid of hydrogen. In a follow-up study, Hughes et al. [4] reported the atomic arrangements of two natural samples of whitlockite, one synthetic whitlockite, and samples of synthetic whitlockite that were heated at 500degC and 1050degC for 24 h. The crystal chemistry and crystal structures of the phases were compared, and it was discovered that the latter treatment resulted in the dehydrogenation of whitlockite to form merrillite. The presence of merrillite vs. whitlockite was widely thought to serve as an indication that magmas were anhydrous [e.g., 6-7]. However, McCubbin et al., [8] determined that merrillite in the martian meteorite Shergotty had no discernible whitlockite component despite its coexistence with OH-rich apatite. Consequently, McCubbin et al., (2014) speculated that the absence of a whitlockite component in Shergotty merrillite and other planetary merrillites may be a consequence of the limited thermal stability of H in whitlockite (stable only at T less than1050degC), which would prohibit merrillite-whitlockite solid-solution at high temperatures. In the present study, we have aimed to test this hypothesis experimentally by examining the stability of whitlockite in basaltic magmas at 1.2 GPa and a temperature range of -1000- 1300degC

    Similar works