Investigating multi-polarization GPR wave transmission through thin layers: Implications for vertical fracture characterization

Abstract

This is the published version. Copyright 2006 American Geophysical Union. All Rights Reserved.We investigate the controls governing the response of ground-penetrating radar (GPR) wave transmission through thin layers in order to explore the use of variable polarization GPR signals for remote characterization of fracture aperture and fluid-fill. We employ an experimental setting that provides controlled observations of the effects of thin-layer properties to the transmitted GPR wavefield. GPR signals of variable polarization, variable angle of incidence, and variable frequency are transmitted through an air- and water-filled layer of variable thickness. We observe that at high angles of incidence, variable polarization GPR signals display characteristic and quantifiable phase and amplitude responses that are related to thin-layer properties. The GPR data are in agreement to analytical solutions of plane-wave oblique-incidence transmission through layered media. We conclude that multi-polarization GPR observations can be exploited to determine fracture properties. This work has implications in the remote determination of fractured formation anisotropic properties, such as fluid-flow

    Similar works