Spinodally synthesized magnetoelectric

Abstract

This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/apl/91/8/10.1063/1.2767174.Lead zirconium titanate/nickel ferrite (PZT/NFO) composites have been produced by crystallizing and spinodally decomposing a gel in a magnetic field below the Curie temperature of NFO. The gel had been formed by spinning a sol onto a silicon substrate. The ensuing microstructure, characterized by atomic force microscopy, magnetic force microscopy, (Lorentz) transmission electron microscopy, and scanning electron microscopy, is nanoscopically periodic and, determined by the direction of magnetic annealing field, anisotropic. The wavelength of the PZT/NFO alternation, 25nm, agrees within a factor of 2 with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semiquantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8V∕cmOe

    Similar works