In establishing the existence of periodic solutions for nonautonomous differential equations of the form x = g(x, t), where g is periodic in t of period for fixed x, it is often convenient to consider the translation operator T(x(t)) = x(t + ). If corresponding to each initial vector chosen in an appropriate region there corresponds a unique solution of our equation, then periodicity may be established by proving the existence of a fixed point under T. This same technique is also useful for more general functional equations and can be extended in a number of interesting ways. In this paper we shall consider a variable type of translation operator which is useful in investigating periodicity for autonomous differential and functional equations where the period involved is less obvious