The impact of soiling on solar panels is an important and well-studied
problem in renewable energy sector. In this paper, we present the first
convolutional neural network (CNN) based approach for solar panel soiling and
defect analysis. Our approach takes an RGB image of solar panel and
environmental factors as inputs to predict power loss, soiling localization,
and soiling type. In computer vision, localization is a complex task which
typically requires manually labeled training data such as bounding boxes or
segmentation masks. Our proposed approach consists of specialized four stages
which completely avoids localization ground truth and only needs panel images
with power loss labels for training. The region of impact area obtained from
the predicted localization masks are classified into soiling types using the
webly supervised learning. For improving localization capabilities of CNNs, we
introduce a novel bi-directional input-aware fusion (BiDIAF) block that
reinforces the input at different levels of CNN to learn input-specific feature
maps. Our empirical study shows that BiDIAF improves the power loss prediction
accuracy by about 3% and localization accuracy by about 4%. Our end-to-end
model yields further improvement of about 24% on localization when learned in a
weakly supervised manner. Our approach is generalizable and showed promising
results on web crawled solar panel images. Our system has a frame rate of 22
fps (including all steps) on a NVIDIA TitanX GPU. Additionally, we collected
first of it's kind dataset for solar panel image analysis consisting 45,000+
images.Comment: Accepted for publication at WACV 201