research

Improved Complexity Bounds for Counting Points on Hyperelliptic Curves

Abstract

We present a probabilistic Las Vegas algorithm for computing the local zeta function of a hyperelliptic curve of genus gg defined over Fq\mathbb{F}_q. It is based on the approaches by Schoof and Pila combined with a modeling of the \ell-torsion by structured polynomial systems. Our main result improves on previously known complexity bounds by showing that there exists a constant c>0c>0 such that, for any fixed gg, this algorithm has expected time and space complexity O((logq)cg)O((\log q)^{cg}) as qq grows and the characteristic is large enough.Comment: To appear in Foundations of Computational Mathematic

    Similar works