Cyclical heat engines are a paradigm of classical thermodynamics, but are
impractical for miniaturization because they rely on moving parts. A more
recent concept is particle-exchange (PE) heat engines, which uses energy
filtering to control a thermally driven particle flow between two heat
reservoirs. As they do not require moving parts and can be realized in
solid-state materials, they are suitable for low-power applications and
miniaturization. It was predicted that PE engines could reach the same
thermodynamically ideal efficiency limits as those accessible to cyclical
engines, but this prediction has not been verified experimentally. Here, we
demonstrate a PE heat engine based on a quantum dot (QD) embedded into a
semiconductor nanowire. We directly measure the engine's steady-state electric
power output and combine it with the calculated electronic heat flow to
determine the electronic efficiency η. We find that at the maximum power
conditions, η is in agreement with the Curzon-Ahlborn efficiency and that
the overall maximum η is in excess of 70% of the Carnot efficiency
while maintaining a finite power output. Our results demonstrate that
thermoelectric power conversion can, in principle, be achieved close to the
thermodynamic limits, with direct relevance for future hot-carrier
photovoltaics, on-chip coolers or energy harvesters for quantum technologies