A novel sequential change detection problem is proposed, in which the change
should be not only detected but also accelerated. Specifically, it is assumed
that the sequentially collected observations are responses to treatments
selected in real time. The assigned treatments not only determine the
pre-change and post-change distributions of the responses, but also influence
when the change happens. The problem is to find a treatment assignment rule and
a stopping rule that minimize the expected total number of observations subject
to a user-specified bound on the false alarm probability. The optimal solution
to this problem is obtained under a general Markovian change-point model.
Moreover, an alternative procedure is proposed, whose applicability is not
restricted to Markovian change-point models and whose design requires minimal
computation. For a large class of change-point models, the proposed procedure
is shown to achieve the optimal performance in an asymptotic sense. Finally,
its performance is found in two simulation studies to be close to the optimal,
uniformly with respect to the error probability