We propose a theoretical framework for thinking about score normalization,
which confirms that normalization is not needed under (admittedly fragile)
ideal conditions. If, however, these conditions are not met, e.g. under
data-set shift between training and runtime, our theory reveals dependencies
between scores that could be exploited by strategies such as score
normalization. Indeed, it has been demonstrated over and over experimentally,
that various ad-hoc score normalization recipes do work. We present a first
attempt at using probability theory to design a generative score-space
normalization model which gives similar improvements to ZT-norm on the
text-dependent RSR 2015 database